Osh Proteins Regulate Phosphoinositide Metabolism at ER-Plasma Membrane Contact Sites

نویسندگان

  • Christopher J. Stefan
  • Andrew G. Manford
  • Daniel Baird
  • Jason Yamada-Hanff
  • Yuxin Mao
  • Scott D. Emr
چکیده

Sac1 phosphoinositide (PI) phosphatases are essential regulators of PI-signaling networks. Yeast Sac1, an integral endoplasmic reticulum (ER) membrane protein, controls PI4P levels at the ER, Golgi, and plasma membrane (PM). Whether Sac1 can act in trans and turn over PI4P at the Golgi and PM from the ER remains a paradox. We find that Sac1-mediated PI4P metabolism requires the oxysterol-binding homology (Osh) proteins. The PH domain-containing family member, Osh3, localizes to PM/ER membrane contact sites dependent upon PM PI4P levels. We reconstitute Osh protein-stimulated Sac1 PI phosphatase activity in vitro. We also show that the ER membrane VAP proteins, Scs2/Scs22, control PM PI4P levels and Sac1 activity in vitro. We propose that Osh3 functions at ER/PM contact sites as both a sensor of PM PI4P and an activator of the ER Sac1 phosphatase. Our findings further suggest that the conserved Osh proteins control PI metabolism at additional membrane contact sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic formation of ER–PM junctions presents a lipid phosphatase to regulate phosphoinositides

This study investigates junctions between the ER and plasma membrane (PM) and their effect on PM phosphoinositides. Membranes of the ER are functionally connected to all membranes of the secretory and endocytic pathways via vesicular transport. There is growing evidence that intimate physical contacts between the ER membrane and membranes of other organelles play major roles in interorganelle c...

متن کامل

The Machinery at Endoplasmic Reticulum-Plasma Membrane Contact Sites Contributes to Spatial Regulation of Multiple Legionella Effector Proteins

The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins...

متن کامل

Osh proteins regulate COPII-mediated vesicular transport of ceramide from the endoplasmic reticulum in budding yeast.

Lipids synthesized at the endoplasmic reticulum (ER) are delivered to the Golgi by vesicular and non-vesicular pathways. ER-to-Golgi transport is crucial for maintaining the different membrane lipid composition and identities of organelles. Despite their importance, mechanisms regulating transport remain elusive. Here we report that in yeast coat protein complex II (COPII) vesicle-mediated tran...

متن کامل

Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membr...

متن کامل

The Plant Cytoskeleton, NET3C, and VAP27 Mediate the Link between the Plasma Membrane and Endoplasmic Reticulum

The cortical endoplasmic reticulum (ER) network in plants is a highly dynamic structure, and it contacts the plasma membrane (PM) at ER-PM anchor/contact sites. These sites are known to be essential for communication between the ER and PM for lipid transport, calcium influx, and ER morphology in mammalian and fungal cells. The nature of these contact sites is unknown in plants, and here, we hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2011